
 

 

Research on Aircraft Engine Fault Diagnosis Based on CNN-BiGRU-Attention 

Model 

Chenfeng Jin1,*, Jie Bai2 

1School of Aeronautical Engineering, Civil Aviation University of China, Tianjin, China, 300300 

2Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Tianjin, China, 300300 

*Corresponding author: j_cf123456@163.com 

Keywords: Aero Engine Fault Diagnosis, Convolutional Neural Network, Bidirectional Gated 

Recurrent Unit, Self-Attention Mechanism 

Abstract: To enhance the accuracy of fault diagnosis in aircraft engines and improve the ability to 

capture critical information, this study proposes a model that integrates attention mechanisms with a 

Convolutional Neural Network and Bidirectional Gated Recurrent Unit (CNN-BiGRU). The 

Convolutional Neural Network (CNN) processes input data through multiple convolutional and 

pooling layers, effectively extracting spatial features. The BiGRU helps the model capture contextual 

dependencies, providing comprehensive dynamic analysis by processing both forward and backward 

data streams. The self-attention mechanism(Attention) enhances the focus on critical information in 

fault diagnosis through dynamic weight allocation. The integration of the CNN has significantly 

improved the model's feature extraction capabilities, likewise, the incorporation of the self-attention 

mechanism has strengthened its ability to capture essential information. Validated on NASA's C-

MAPSS dataset, Compared with the most advanced models, the proposed framework achieves better 

performance. This model is not only efficient in training but also holds promising prospects for 

applications in fault prediction within the aviation field. 

1. Introduction 

The gas path components of an aeroengine may cause material damage and performance 

degradation if they are operated under extreme conditions for a long time., which may lead to material 

damage and performance degradation. In such scenarios, issues like excessive tip clearance, turbine 

blade burning, fuel nozzle clogging, rotor disk or blade fracture can occur [1]. These faults will 

significantly alter the engine's gas path measurement parameters. Existing models often have low 

diagnostic accuracy, primarily due to two reasons: space factors: Traditional fault diagnosis models 

are limited in handling complex spatial features. While some models attempt to improve diagnostic 

capabilities by increasing the dimension and complexity of data input, this often makes it difficult for 

the model to capture subtle differences in space features in practical applications.  

In recent years, aero-engine fault diagnosis has been widely studied as a hotspot. Existing research 

can be broadly classified into model-based, data-driven, and hybrid methods. The model method is 

developed in the form of physical model to evaluate and predict the health status. Im et al. introduced 

an online fault diagnosis technique using a physical model to estimate fault severity through negative 

sequence currents [2]. However, these methods face limitations when dealing with complex nonlinear 

and non-stationary data. With the application of deep learning techniques in fault diagnosis has 

attracted widespread attention, especially for handling time-series data. For instance, Zuo et al [3]. 

proposed an aero engine fault diagnosis model, which combines 1DCNN-BiLSTM and CBAM to 

automatically extract fault features. Kexin Zhang et al. analyzed various sensor data and proposed a 

deep neural network method for diagnosing aero-engine surge faults, achieving over 99% 

classification accuracy [4]. Another approach is data-driven, incorporating methods like deep learning 

networks [5-6]. For example, Wang, Y and Liu, Y take the method combining Convolutional Neural 

Networks and Long Short-Term Memory (LSTM) networks has been implemented to achieve 

intelligent fault diagnosis for gas turbine engines [7]. Shen Y et al [8]. proposed a hybrid multi-mode 
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machine learning fault diagnosis strategy for aircraft gas turbine engines. 

With the rapid development of computer technology, people have begun to use not only data-

driven methods but also artificial intelligence methods based on deep learning. In the field of fault 

diagnosis, diagnostic methods based on deep learning have also been widely applied and have 

achieved significant results. For example, on fault datasets of rotating machinery like the Mechanical 

Fault Prevention Technology Society dataset in the United States, have achieved the highest levels of 

accuracy. However, fault datasets collected from bearings or gearboxes in stable conditions exhibit 

cyclostationary characteristics, with single data patterns that are easily overfitted. Therefore, in recent 

years, experts have proposed numerous models to optimize aero-engine fault diagnosis. Therefore 

various scholars have used multiple deep learning models, including RNN (Recurrent Neural 

Network), LSTM, Gated Recurrent Unit (GRU) and Bidirectional Gated Recurrent Unit (BiGRU) 

models, to address related issues. Among them, the RNN model has shown good performance in fault 

diagnosis, especially in handling time series data. This model improves the accuracy of fault 

identification by obtaining the dependency information between data. However, RNNs suffer from 

gradient vanishing and exploding problems, which degrade their performance when processing long 

time series data. Additionally, RNNs have limited performance in complex pattern recognition and 

distinguishing between multiple fault types [9]. Following RNN, the LSTM proposed by Gang Sun 

and others effectively addresses the gradient vanishing problem of RNNs through its special gating 

mechanism, improving diagnostic stability and accuracy. However, LSTM-based models have issues 

with long training times and high computational complexity [10]. Experts then proposed the GRU 

model to simplify the LSTM network structure, reducing the number of parameters and enhancing 

computational efficiency. Studies have shown that GRU performs as well as or even better than 

LSTM in handling time series data, with faster training speed and lower computational resource 

consumption [11]. Despite its generally good performance, GRU still lags behind LSTM in handling 

some complex long sequence data and has limitations in distinguishing between various fault modes 

[12]. Thus, Zheng Cheng and others proposed the BiGRU model, which improves understanding of 

time series data by leveraging bidirectional information flow. Notably, the 1DCNN-BiLSTM model 

proposed by Zheng Cheng and colleagues combines the advantages of BiGRU, significantly 

enhancing fault classification accuracy, and improving the reliability of aircraft engine operations. 

However, the BiGRU model has high computational complexity and long training times. Additionally, 

the bidirectional structure may increase latency in some real-time applications. 

In summary, to address the issues of high computational complexity, latency, and complex 

parameter tuning in BiGRU models for fault diagnosis prediction, this study proposes a CNN-BiGRU 

model based on an attention mechanism. Convolutional Neural Networks (CNN) process input data 

through multiple convolution and pooling layers, effectively extracting spatial features. The BiGRU 

upgradation this model's capability to capture temporal dependencies in time series data by analyzing 

both forward and backward information simultaneously, providing comprehensive dynamic analysis. 

The self-attention mechanism strengthens the model's focus on critical information in fault diagnosis 

through dynamic weight allocation. By incorporating CNNs, the model significantly improves feature 

extraction capabilities. 

2. Model and theoretical methods 

2.1 CNN-BiGRU-Attention 

The structure of the CNN-BiGRU-Attention model is shown in Figure 1. This model combines 

CNN, BiGRU, and the attention mechanism to improve the performance of fault diagnosis. 

Structural details are described below: 

1) Input layer: This layer receives time series data from the aero-engine. This data typically 

includes sensor readings such as temperature, pressure, and speed. 

2) CNN layer: Multiple convolutional layers are used for feature extraction. These layers identify 

local patterns and features in the datSa through convolution operations, which are essential for 

understanding hidden information in complex engine data. In this model, this paper specify 64 output 
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filters (convolutional kernels) for the convolutional layers.  

3) BiGRU layer: The data is then fed into the BiGRU layer. BiGRU effectively captures temporal 

dependencies in time series data, and its bidirectional structure allows the model to consider both past 

and future information simultaneously, which is crucial for time series analysis. 

4) Attention mechanism layer: The features output from the previous layer are weighted by the 

attention mechanism. enabling the model to focus on the most critical information. 

5) Others: Finally, the fully connected layers integrate all the learned features and connect them 

to the last layer. The output layer then makes the final fault diagnosis based on the integrated features. 

 

Fig.1 Structure of CNN-BiGRU-Attention 

2.2 CNN Method  

CNN is a deep learning architecture, primarily consisting of many layers as shown in Figure 2. 

In the convolutional layers of CNN, the input data which is convolved with convolutional kernels. 

These kernels slide over local regions of the input data, generating feature maps through the 

computation of dot products.  

The purpose of the pooling layer is to effectively reduce the feature dimension and thus reduce the 

computational complexity and stability. 

Finally, the output of the pooling layers is flattened and connected into one dimension through one 

or more fully connected layers for further processing, such as classification or other tasks.  
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Fig.2 Structure of CNN 

2.3 BiGRU 

BiGRU is a deep learning architecture, primarily consisting of many layers as shown in Figure 3. 

Assuming xt is the input vector at time t, the process of the gated recurrent unit is as follows: 

 zt=σ(Wzxt+Uzht-1+br)                         (1) 

                    rt=σ(Wrxt+Urht-1+br)                         (2) 

     h
~

t= tanh(Whxt+Uh(rtht-1)+bh)   

    
                 (3) 

             ht=ztht-1+(1-zt)h
~

t
                             (4)  

where zt  and rt  represent the update gate and reset gate, respectively. h
~

t  represents the 

candidate hidden state. ht-1 and ht represent the hidden states at time t-1 and t respectively. W and 

U represent weights. b represent the bias term; and σ represents the Sigmoid function. The 

mathematical expressions for the BiGRU network structure are as follows: 

h
→

t=GRU f(xt,h
→

t-1)                            (5) 

            h
←

t=GRU f(xt,h
←

t-1)                            (6) 

 ht=f(W
h
⏜

t

h
→

t+W
h
←

t

h
←

t+bt)                        (7) 

where ht

→

 and ht

←

 represent the forward and backward hidden states at time t respectively. W
ht

← 

and W
ht

→ represent the weights of the forward and backward hidden states at time t respectively; and 

bt is the bias term for the hidden state at time t. 
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Fig.3 Structure of BiGRU 

2.4 SE-Attention 

The model structure diagram shown in Figure 4 illustrates the detailed computation process and 

principles of the Attention mechanism: 

Phase One: Calculating Attention Scores 

In this phase, the model needs to calculate the similarity between the Query and each Key. This is 

usually achieved through dot product, cosine similarity, or a multi-layer perceptron (MLP). In the 

first phase, each Key undergoes a dot product operation with the Query to obtain an initial similarity 

score. These scores represent the degree of match between the Query and each Key, indicating the 

importance of each Key to the Query. 

The formula is expressed as follows: 

Similarity(Query, Key
i
)=Query⋅Key

i
                (8) 

Similarity(Query, Key
i
)=

Query⋅Keyi

‖Query‖⋅‖Keyi‖
                (9) 

                      Similarity(Query, Key
i
)=MLP(Query, Key

i
)          (10) 

Along the formula, Query is the query vector, and Key
i
 is the i-th key vector. 

Phase Two: Softmax Normalization 

In the second phase, the obtained attention scores are scaled (usually by dividing by the square 

root of the dimensionality of the Key vector) to avoid gradient vanishing or explosion problems. Then, 

they are normalized using the Softmax function. Softmax ensures that the sum of all output scores 

equals 1, allowing each score to be interpreted as a probability. This step enables the model to 

emphasize the most relevant features and suppress irrelevant information. 

The formula is expressed as follows: 

ai=Softmax(Simi)=
eSimi

∑ e
SimjLx

j=1

                      (11) 

where Lx is the sequence length, as the total number of keys, and Simi represents the dot product 

between the query vector and the i-th key vector. 

Phase Three: Calculating Weighted Value 

In the final phase, each Value is weighted according to the normalized scores obtained from the 

Softmax step. The weighted sum ultimately constitutes the output Attention Value, which reflects the 

aggregated information of all Values weighted by their importance according to the Query.  
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The formula is expressed as follows: 

Attention(Query, Source)= ∑ ai
Lx

i=1  Valuei                   (12) 

where Valuei is the value vector, and ai represents the weight of i-th vector, calculated as the 

corresponding Softmax score through cumulative summation. 

 

Fig.4 Structure of Attention 

3. Experiments and analysis 

3.1 Simulation setup 

(1) Experimental environment 

Table.1. Experimental environment table 

Software and hardware configuration Attributes 

Operating system 64-bit Windows 10 operating system 

GPU Intel Xeon E5-2650 v4 Processor 

GPU memory 6.0 GB 

Graphics card NVIDIA GeForce GTX 1660 Ti 

Programming language Python3.8 

Framework Tensorflow 

The experimental environment configuration is shown in Table 1. This paper used the TensorFlow 

framework to construct and train deep learning models. All models were written in the Python 3.8 

programming language. Additionally, the Keras library integrated into TensorFlow provides API 

modules for existing deep learning network models. By calling these APIs, network models can be 

easily constructed and parameter tuning is very convenient. 

(2) Data 

The dataset used in this paper is the engine full-life simulation experiment dataset (C-MAPSS) 

from the National Aeronautics and Space Administration (NASA). Which was designated for 

research on aero-engine fault prediction at the International Conference on Prognostics and Health 

Management (PHM08). The C-MAPSS dataset records the full-cycle sensor monitoring data of a 

certain type of turbofan engine under different fault modes and operating conditions, from initial 

operation to gradual failure. The dataset includes three operational setting parameters, 21 sensor status 
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monitoring parameters, and the corresponding number of operational cycles. 

The C-MAPSS dataset is a simulated dataset generated by NASA using the Commercial Modular 

Aero-Propulsion System Simulation software. The dataset covers key components of aero-engines, 

such as fans, compressors, combustion chambers, turbines, and exhaust nozzles, demonstrating 

extensive application value. It can be used not only to compare and evaluate the performance of 

different engine models but also to conduct deep analysis of the working characteristics of each 

component and their specific impacts on overall engine performance. There are four subsets in total, 

with different numbers of operating conditions and fault states, as shown in Table 2. 

Table.2. C-MAPSS dataset 

Dataset FD001 FD002 FD003 FD004 

Training Set 100 260 100 249 

Test Set 100 259 100 248 

Operating Conditions 1 6 1 6 

Fault States 1 1 2 2 

In this study, this model focus on the FD001 dataset under single operating conditions, which 

involves dividing the FD001 dataset into training and testing subsets. The training subset, 

Train_FD001.txt, includes parameter information for 100 engines operating throughout their entire 

lifecycle. The testing subset, Test_FD001.txt, includes parameter information for 100 engines that 

stopped at a certain point before failure. This information mainly consists of data from multiple 

sensors. Each engine's parameter information includes three flight condition monitoring parameters 

(altitude, Mach number, throttle resolver angle) and 21 performance monitoring parameters, totaling 

24 sensor monitoring parameters. This paper primarily studies the sensor parameter information of 

an engine throughout its lifecycle. 

Due to different operating conditions and fault modes, the time points recorded during single 

conditions, i.e., during aircraft cruising, can be approximately considered constant for the operating 

condition parameters (altitude, Mach number, and throttle resolver angle). Randomly selecting six 

columns of data from FD001, namely LPC outlet total temperature, HPC outlet total temperature, 

LPT outlet total temperature, HPC outlet pressure, fan speed, and core engine speed, the sensor 

characteristic data for engine 1 throughout its lifecycle is shown in Table 3: 

Table.3. Partial sensor data 

Serial Number Parameter Meaning 

7 T24 Total temperature at the low-pressure compressor outlet 

8 T30 Total temperature at the high-pressure compressor outlet 

9 T50 Total temperature at the low-pressure turbine outlet 

12 P30 Total pressure at the high-pressure compressor outlet 

13 Nf Fan speed 

14 Nc Core speed 

(3) Parameter settings and processing flow 

Table 4 records the initial learning rate, batch size, and optimizer for the CNN-BiGRU-Attention 

model details. 

Table.4. CNN-BiGRU-Attention model training parameters 

Training parameter Value 

Learning rate 0.001 

Number of iterations 10 

Convplution kernel size 1 

Dropout rate 0.3 

Number of convolution kernels 64 

Number of GRU layer units 64 

Input dimension 6 

Optimizer Adam 
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(4) Evaluation metrics 

In the field of machine learning, a confusion matrix is generally used to evaluate classification 

results in supervised learning. In the unsupervised learning, this matrix is usually called a matching 

matrix.  

Accuracy is a metric that indicates the proportion of correctly predicted samples out of the total 

number of samples, defined as follows: 

   Acc=
TP+TN

TP+TN+FP+FN
                              (13) 

Precision is defined as the proportion of actual positive samples among the predicted positive 

samples, defined as follows: 

Pre=
TP

TP+FP
                                 (14)  

Recall is defined as the proportion of correctly identified positive samples among all actual 

positive samples, defined as follows: 

Rec=
TP

TP+FN
                                   (15)  

The F1-Score is a metric that comprehensively reflects the precision and recall of a classification 

model, particularly effective in handling imbalanced datasets, defined as follows: 

F1=2*
Precision.Recall

Precision+Recall
                               (16) 

3.2 Model validation 

To further evaluate the performance of the proposed model on the training set and test set, and 

analyze the model's generalization ability and fitting condition, this model compared the loss values 

(loss) and validation loss values (val_loss) on the dataset. The comparison results are shown in Figure 

5. 

 

Fig.5 Comparison chart of loss values on training and validation sets for the model 

Based on Figure 5, this model can observe the changes in loss values during the training process. 

The val_loss initially shows significant fluctuations with an upward trend, indicating poor adaptation 

of the model to the test data in the early stages. Subsequently, val_loss rapidly decreases and stabilizes, 

indicating that the model parameters begin to adapt and learn effective features. After approximately 

20 epochs, both the val_loss and loss stabilize, and val_loss remains at a relatively low level, 

suggesting that the CNN-BiGRU-Attention model demonstrates good adaptability and generalization 

capability on both the training and validation datasets. The loss value is consistently lower than the 

val_loss, with a relatively small gap, indicating that the test set exhibits larger errors, suggesting a 

slight overfitting phenomenon. Overall, the model's performance remains reasonable. 
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3.3 Ablation experiments 

Ablation experiments (horizontal comparison experiments) involve gradually adding or removing 

model components to evaluate the specific impact of these components on model performance. For 

the CNN-BiGRU-Attention model in this study, the contributions of each component are analyzed 

following. 

As the Table 5 below, the evaluattion indicators of the above components are summarized in Table 

5. 

Table.5. Evaluation metrics for different models on the C-MAPSS dataset 

Model name Precision Recall Accuracy F1 Score 

BiGRU 0.8219 0.8824 0.8772 0.8511 

CNN- BiGRU 0.8789 0.8088 0.8830 0.8461 

CNN-BiGRU-Attention 0.8836 0.8031 0.8965 0.8414 

According to the results in Table 5, although the inclusion of the CNN layer reduces the recall rate, 

it enhances the precision and accuracy of the model's local feature extraction capabilities. Specifically, 

the precision increases by 0.057 and the accuracy improves by 0.0058. Moreover, after incorporating 

the Attention mechanism, the model's accuracy and precision further improve compared to the 

previous models. Specifically, the precision increases by 0.0135 and the accuracy increases, 

indicating that the Attention layer plays a crucial role in enhancing the model's focus on important 

time steps. These findings demonstrate the importance of the CNN and Attention layers in improving 

the predictive performance of the model, especially when dealing with complex time-series data. The 

proposed model shows the best performance in terms of accuracy, but the lowest F1 score, indicating 

a relatively low recall rate. The Attention mechanism may help the model concentrate on learning 

specific features, leading to the neglect of some positive samples. The CNN-BiGRU-Attention model 

fails to identify all true positive samples, resulting in some positive samples being missed. 

The dataset used in this study is the engine full-life simulation dataset (C-MAPSS) provided by 

NASA. Specifically, our experiments focus on the FD001 dataset under a single operating condition, 

which includes sensor readings and fault modes of aircraft engines under different operating cycles. 

The complexity of these data is mainly reflected in the non-linearity and non-stationarity of the time 

series, making it difficult for traditional machine learning methods to capture potential dynamic 

patterns and trends. By using the CNN-BiGRU-Attention model, this model can more effectively 

identify and utilize the critical information in these complex time-series data, thereby improving the 

accuracy of sensor prediction data. 

To comprehensively analyze the effectiveness of the proposed method, the loss comparisons of 

these three models are shown in Figure 6: 

 

Fig.6 Loss comparison of BiGRU and its variants 

Based on Figure 6, this paper can easily observe that the loss value of the proposed model is 

relatively high due to the excessive number of parameters in the early training stage, leading to 
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overfitting. Additionally, although the Attention mechanism brings the advantage of focusing on 

critical features, it fails to function effectively in the early training stage, resulting in higher loss 

values in the initial iterations. Among them, CNN-BiGRU-Attention shows an upward trend in the 

number of iterations from 60 to 80, overfitting during the training process. Finally, the loss values of 

all three curves stabilize after 100 iterations. 

3.4 Superiority verification 

Based on the model training parameters set forth above, the experiments in this article will be 

conducted on the C-MAPSS Train_FD001.txt dataset. The predicted values obtained from this model 

are compared with the test set divided from Train_FD001.txt, and their performance is evaluated 

using four evaluation metrics: precision, recall, accuracy and F1 score. Compared with other 

algorithms, the evaluation results are shown in Table 6: 

Table.6. Evaluation metrics for different models on the C-MAPSS dataset 

Model name Precision Recall Accuracy F1 Score 

CNN-Bigru-Attention 0.8836 0.8031 0.8965 0.8414 

CNN-Bilstm-Attention 0.8059 0.7941 0.8421 0.7969 

CNN-Attention-Bilstm 0.8002 0.7647 0.8304 0.7819 

CNN-Attention-Bigru 0.7764 0.7794 0.824 0.7794 

CNN-Bigru-Attention performs significantly better in terms of precision compared to other models, 

outperforming the CNN-Attention-Bigru model by approximately 13.82%, the CNN-Attention-

Bilstm model by 10.42%, and the CNN-BiLSTM-Attention model by 9.64%. This indicates that 

CNN-Bigru-Attention is more accurate in identifying positive samples with a lower false positive 

rate. In terms of accuracy, CNN-Bigru-Attention significantly outperforms other models, with an 

improvement of approximately 8.80% over the CNN-Attention-Bigru model, 6.46% over the CNN-

Bilstm-Attention model, and 7.95% over the CNN-Attention-Bilstm model. This shows that CNN-

Bigru-Attention has a higher overall correct prediction rate. In terms of recall, although the overall 

improvement is small, CNN-Bigru-Attention still outperforms other models. Specifically, it improves 

by about 3.04% compared to the CNN-Attention-Bigru model, 1.13% compared to the CNN-Bilstm-

Attention model, and 5.01% compared to the CNN-Attention-Bilstm model. This indicates that CNN-

Bigru-Attention performs better in capturing all positive samples. To comprehensively consider 

precision and recall, CNN-Bigru-Attention's F1 score is also significantly higher than other models, 

with an improvement of approximately 7.95% over the CNN-Attention-Bigru model, 7.61% over the 

CNN-Attention-Bilstm model, and 5.59% over the CNN-Bilstm-Attention model. This shows that 

CNN-Bigru-Attention performs well in balancing precision and recall. 

Overall, these advantages demonstrate that CNN-Bigru-Attention has higher reliability and 

practicality in the actual application of the C-MAPSS dataset. The superiority of CNN-Bigru-

Attention has been verified. 

4. Conclusion 

Traditional condition monitoring methods often rely on threshold determination, which not only 

makes it difficult to capture the subtle temporal changes of engine component faults but also fails to 

effectively predict potential faults. Therefore, this paper introduces a CNN-BiGRU-Attention-based 

model. The model first utilizes the powerful feature extraction capabilities of the CNN layer to 

identify local patterns and key features in sensor data, which is crucial for understanding the operating 

state of the engine. Then, the BiGRU layer, through its bidirectional structure, integrates information 

from both forward and backward time steps, effectively capturing the dynamic characteristics of time-

series data. Additionally, the Attention mechanism allows the model to focus on critical time steps, 

optimizing information processing and enhancing the analysis of complex data. Using the Adam 

optimizer significantly improves training speed, stability, and prediction performance through 

efficient parameter optimization.  
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Applying the CNN-BiGRU-Attention model to the C-MAPSS engine simulation dataset shows 

good classification results, with an accuracy of 0.8965 and a precision of 0.8836. The model's 

effectiveness and applicability have been verified.  

In summary, the model demonstrates excellent performance in fault diagnosis due to its high 

precision and accuracy, fulfilling the stringent demands of aircraft engine fault diagnosis and 

guaranteeing system safety and reliability. The paper’s model has a momentous potential for 

improving aircraft engine fault diagnosis. It can be applied in predictive maintenance, real-time 

monitoring, and comprehensive engine health management systems. By accurately predicting faults 

and analyzing engine data, it enhances maintenance scheduling, reduces downtime, and ensures 

operational safety. Future applications include expanding the model to other engine types, integrating 

with IoT and big data, and applying it across different industries like automotive and power 

generation. Additionally, developing user-friendly diagnostic tools and aligning with regulatory 

standards will facilitate broader adoption. The model's adaptability and high accuracy promise 

substantial advancements in fault diagnosis technology. 
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